login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A168583
The number of ways of partitioning the multiset {1,1,2,3,...,n-1} into exactly three nonempty parts.
5
1, 4, 16, 58, 196, 634, 1996, 6178, 18916, 57514, 174076, 525298, 1582036, 4758394, 14299756, 42948418, 128943556, 387027274, 1161475036, 3485211538, 10457207476, 31374768154, 94130595916, 282404370658, 847238277796, 2541765165034, 7625396158396
OFFSET
3,2
COMMENTS
The number of ways of partitioning the multiset {1, 1, 2, 3, ..., n-1} into exactly two, four and five nonempty parts are given in A083329, A168584 and A168585, respectively.
FORMULA
For a>=3, a(n) = 3^(n-2) - 3*2^(n-3) + 1.
E.g.f.: 3*e^(3x) - 3*e^(2x) + e^x (shifted).
O.g.f.: x^3*(1-2x+3x^2)/((1-x)*(1-2x)*(1-3x)).
a(n) = A126644(n-3). - R. J. Mathar, Dec 11 2009
EXAMPLE
The partitions of {1,1,2,3} into exactly three nonempty parts are {{1},{1},{2,3}}, {{1},{2},{1,3}}, {{1},{3},{1,2}} and {{2},{3},{1,1}}.
MAPLE
A168583:=n->3^(n-2)-3*2^(n-3)+1: seq(A168583(n), n=3..40); # Wesley Ivan Hurt, Dec 12 2015
MATHEMATICA
f1[n_] := 3^(n - 2) - 3 2^(n - 3) + 1; Table[f1[n], {n, 3, 25}]
PROG
(Magma) [3^(n-2) - 3*2^(n-3) + 1: n in [3..35]]; // Vincenzo Librandi, Dec 12 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Martin Griffiths, Nov 30 2009
STATUS
approved