login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A168169
Primes with d digits (d>0) which have more than 2d distinct primes as substrings.
2
23719, 31379, 52379, 113171, 113173, 113797, 123719, 153137, 179719, 199739, 211373, 213173, 229373, 231197, 231379, 233113, 233713, 236779, 237331, 237619, 237971, 241973, 259397, 291373, 313739, 317971, 327193, 337397, 343373, 353173
OFFSET
1,1
COMMENTS
"Substrings" includes the whole number in itself.
This is a subsequence of A168167.
The least palindrome in this sequence is 9179719.
LINKS
EXAMPLE
The least number with d digits to have over 2d distinct prime substrings is the prime a(1)=23719, with 5 digits and #{2, 3, 7, 19, 23, 37, 71, 719, 2371, 3719, 23719} = 11.
MAPLE
filter:= proc(n) local i, j, count, d, S, x, y;
if not isprime(n) then return false fi;
d:= ilog10(n)+1;
count:= 0; S:= {};
for i from 0 to d-1 do
x:= floor(n/10^i);
for j from i to d-1 do
y:= x mod 10^(j-i+1);
if not member(y, S) and isprime(y) then count:= count+1; S:= S union {y}; if count > 2*d then return true fi fi
od od;
false
end proc:
select(filter, [seq(i, i=1..10^6, 2)]); # Robert Israel, Nov 11 2020
PROG
(PARI) {forprime( p=1, default(primelimit), #prime_substrings(p) > #Str(p)*2 & print1(p", "))} /* see A168168 for prime_substrings() */
CROSSREFS
KEYWORD
nonn,base
AUTHOR
M. F. Hasler, Nov 28 2009
STATUS
approved