login
A168092
a(n) = number of natural numbers m such that n - 2 <= m <= n + 2.
0
2, 3, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5
OFFSET
0,1
COMMENTS
Generalization: If a(n,k) = number of natural numbers m such that n - k <= m <= n + k (k >= 1) then a(n,k) = a(n-1,k) + 1 = n + k for 0 <= n <= k, a(n,k) = a(n-1,k) = 2k + 1 for n >= k + 1 (see, e.g., A158799). a(n) = (2 + n) for 0 <= n <= 2, a(n) = 5 for n >= 3.
FORMULA
G.f.: (2+x+x^2+x^3)/(1-x) = 1/(1-x)+(1-x^4)/(1-x)^2. - Jaume Oliver Lafont, Nov 29 2009
CROSSREFS
Cf. A158411. - Jaume Oliver Lafont, Nov 29 2009
Sequence in context: A273264 A281826 A062985 * A210032 A093392 A079947
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, Nov 18 2009
STATUS
approved