Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #41 May 10 2020 08:37:57
%S 5,7,11,5,13,7,17,7,37,19,29,119,47,41,23,5,29,31,37,11,37,41,43,13,7,
%T 13,71,13,49,13,7,47,7,7,53,79,59,61,5,97,71,103,67,71,17,73,61,139,
%U 17,17,79,19,19,19,19,83,151,89,29,97,263,29,101,103,223,107,109,271,37,23,113,359
%N a(n) = A120301(A123944(n))/A058313(A123944(n)).
%C The ratio A120301(n)/A058313(n) = 1 for most n.
%C a(n) is prime for most n.
%C The first composite ratio a(12) = 119 = 7*17 corresponds to A123944(12) = 238.
%C The next two composite ratios a(29) = a(76) = 49 = 7^2 correspond to A123944(29) = 1470 and A123944(76) = 10290. [Edited by _Petros Hadjicostas_, May 09 2020]
%t f = 0; Do[f = f + (-1)^(n + 1) * 1/n; g = Abs[(2(-1)^n * n + (-1)^n - 1)/4] * f; rfg = Numerator[g]/Numerator[f]; If[(rfg == 1) == False, Print[rfg]], {n, 1500}]
%o (PARI) lista(nn) = {for (n=1, nn, my(sn = sum(k=1, n, (-1)^(k+1)/k)); if ((s=numerator(sn)) != (ss=abs(numerator((-1/4) * (2*(-1)^n*n + (-1)^n - 1) * sn))), print1(ss/s, ", ")););} \\ _Michel Marcus_, May 10 2020
%Y Cf. A058313, A120301, A123944.
%K nonn
%O 1,1
%A _Alexander Adamchuk_, Nov 02 2009
%E a(32)-a(46) from _Petros Hadjicostas_, May 09 2020, using _Michel Marcus_'s program and the data from A123944
%E a(47)-a(72) from _Petros Hadjicostas_, May 09 2020, using the Mathematica program