OFFSET
1,5
COMMENTS
The recursion T(n, k) = (m*n - m*k + 1)*T(n-1, k-1) + (5*k - 4)*(m*k - (m - 1))*T(n-1, k) was intended to range over m values 0 to 4 as given by the original Mathematica code. This sequences is the case for m = 0. - G. C. Greubel, May 29 2016
LINKS
G. C. Greubel, Table of n, a(n) for the first 25 rows
FORMULA
T(n, k) = T(n - 1, k - 1) + (5*k - 4)*T(n - 1, k).
E.g.f. column k: int(exp(x)*((exp(5*x)-1)/5)^(k-1)/(k-1)!, x) + (-1)^k/A008548(k). - Wolfdieter Lang, Aug 13 2017
EXAMPLE
Triangle T(n, k) starts:
n\k 1 2 3 4 5 6 7 8 9 10 ...
1: 1
2: 1 1
3: 1 7 1
4: 1 43 18 1
5: 1 259 241 34 1
6: 1 1555 2910 785 55 1
7: 1 9331 33565 15470 1940 81 1
8: 1 55987 378546 281085 56210 4046 112 1
9: 1 335923 4219993 4875906 1461495 161406 7518 148 1
10: 1 2015539 46755846 82234489 35567301 5658051 394464 12846 189 1
... Reformatted, - Wolfdieter Lang, Aug 13 2017
MATHEMATICA
A[n_, 1] := 1; A[n_, n_] := 1; A[n_, k_] := A[n - 1, k - 1] + (5*k - 4)*A[n - 1, k]; Flatten[ Table[A[n, k], {n, 10}, {k, n}]] (* modified by G. C. Greubel, May 29 2016 *)
CROSSREFS
KEYWORD
AUTHOR
Roger L. Bagula, Oct 26 2009
STATUS
approved