login
A166973
Triangle T(n,k) read by rows: T(n, k) = (m*n - m*k + 1)*T(n - 1, k - 1) + (5*k - 4)*(m*k - (m - 1))*T(n - 1, k) where m = 0.
2
1, 1, 1, 1, 7, 1, 1, 43, 18, 1, 1, 259, 241, 34, 1, 1, 1555, 2910, 785, 55, 1, 1, 9331, 33565, 15470, 1940, 81, 1, 1, 55987, 378546, 281085, 56210, 4046, 112, 1, 1, 335923, 4219993, 4875906, 1461495, 161406, 7518, 148, 1, 1, 2015539, 46755846, 82234489
OFFSET
1,5
COMMENTS
The recursion T(n, k) = (m*n - m*k + 1)*T(n-1, k-1) + (5*k - 4)*(m*k - (m - 1))*T(n-1, k) was intended to range over m values 0 to 4 as given by the original Mathematica code. This sequences is the case for m = 0. - G. C. Greubel, May 29 2016
With offset 0 in the rows and columns this is the Sheffer triangle S2[5,1] = (exp(x), (exp(5*x) - 1)/5). See S2[4,1] = A111578 (with offsets 0), S[3,1] = A111577 (with offsets 0), S2[2,1] = A039755
FORMULA
T(n, k) = T(n - 1, k - 1) + (5*k - 4)*T(n - 1, k).
E.g.f. column k: int(exp(x)*((exp(5*x)-1)/5)^(k-1)/(k-1)!, x) + (-1)^k/A008548(k). - Wolfdieter Lang, Aug 13 2017
EXAMPLE
Triangle T(n, k) starts:
n\k 1 2 3 4 5 6 7 8 9 10 ...
1: 1
2: 1 1
3: 1 7 1
4: 1 43 18 1
5: 1 259 241 34 1
6: 1 1555 2910 785 55 1
7: 1 9331 33565 15470 1940 81 1
8: 1 55987 378546 281085 56210 4046 112 1
9: 1 335923 4219993 4875906 1461495 161406 7518 148 1
10: 1 2015539 46755846 82234489 35567301 5658051 394464 12846 189 1
... Reformatted, - Wolfdieter Lang, Aug 13 2017
MATHEMATICA
A[n_, 1] := 1; A[n_, n_] := 1; A[n_, k_] := A[n - 1, k - 1] + (5*k - 4)*A[n - 1, k]; Flatten[ Table[A[n, k], {n, 10}, {k, n}]] (* modified by G. C. Greubel, May 29 2016 *)
CROSSREFS
Cf. A111577.
S2[4,1] = A111578 (with offsets 0), S2[3,1] = A111577 (with offsets 0), S2[2,1] = A039755. - Wolfdieter Lang, Aug 13 2017
Sequence in context: A108267 A156916 A173584 * A157156 A022170 A178658
KEYWORD
nonn,easy,tabl
AUTHOR
Roger L. Bagula, Oct 26 2009
STATUS
approved