login
A166966
Eigensequence of A047999, Sierpinski's gasket.
4
1, 2, 3, 7, 8, 17, 27, 66, 67, 135, 204, 479, 553, 1182, 1889, 4641, 4642, 9285, 13929, 32504, 37153, 78957, 125414, 306591, 311299, 627308, 948029, 2226203, 2570492, 5494707, 8782085, 21577880, 21577881, 43155763, 64733646, 151045177, 172623065, 366824020, 582602867, 1424140365
OFFSET
0,2
COMMENTS
Equals row sums of triangle A166967. Prefaced with a 1: (1, 1, 2, 3, 7, 8, 17, ...) has an apparent parity of (1, 1, 0, ... repeat).
FORMULA
Eigensequence of triangle A047999. Let triangle Q = a one-row-shifted-down version of Sierpinski's gasket, placing a "1" at top. Take lim_{n->oo} Q^n, resulting in a one-column vector [1, 1, 2, 3, 7, ...]. Then delete the first "1", getting A166966: (1, 2, 3, 7, 8, 17, ...).
PROG
(PARI) T(n, k) = bitand(n-k, k)==0; \\ A047999
shiftm(m, nn) = my(shm=matrix(nn+1, nn+1)); shm[1, 1]=1; for (n=1, nn, for(k=1, nn, shm[n+1, k] = m[n, k]; ); ); shm;
lista(nn) = my(m=matrix(nn, nn, n, k, T(n-1, k-1)), shm=shiftm(m, nn), shmnn=shm^nn); vector(nn, k, shmnn[k+1, 1]); \\ Michel Marcus, Nov 19 2022
CROSSREFS
Sequence in context: A244508 A060121 A002964 * A247843 A181658 A251541
KEYWORD
nonn
AUTHOR
Gary W. Adamson, Oct 25 2009
EXTENSIONS
More terms from Michel Marcus, Nov 19 2022
STATUS
approved