login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A166919
Irregular triangle of coefficients of Product_{j=1..n} (x^j - x - 1), read by rows.
1
1, -1, 2, 1, -1, -6, -5, 2, 3, 1, -1, 24, 26, -3, -14, -13, -2, 3, 3, 1, -1, -120, -154, -11, 73, 79, 47, 13, -21, -22, -9, -1, 3, 3, 1, -1, 720, 1044, 220, -427, -547, -361, -245, -41, 142, 149, 94, 30, -8, -30, -17, -8, -1, 3, 3, 1, -1
OFFSET
0,3
FORMULA
T(n, k) = [x^k]( p(n, x) ), where p(n, x) = Product_{j=1..n} (-j - x + x^j).
T(n, 0) = (-1)^n * n!.
T(n, binomial(n+1,2) - 1) = -1. - G. C. Greubel, Mar 27 2022
EXAMPLE
Irregular triangle begins as:
1;
-1;
2, 1, -1;
-6, -5, 2, 3, 1, -1;
24, 26, -3, -14, -13, -2, 3, 3, 1, -1;
-120, -154, -11, 73, 79, 47, 13, -21, -22, -9, -1, 3, 3, 1, -1;
MATHEMATICA
(* First program *)
p[n_, x_]:= p[n, x]= Product[-k-x +x^k, {k, n}];
Table[CoefficientList[p[n, x], x], {n, 0, 10}]//Flatten
(* Second program *)
m:=11;
T[n_, k_]:= T[n, k]= Coefficient[Series[Product[-j-x +x^j, {j, n}], {x, 0, Binomial[m+1, 2]}], x, k];
Join[{1}, Table[T[n, k], {n, m}, {k, 0, Binomial[n+1, 2] -1}]//Flatten] (* G. C. Greubel, Mar 27 2022 *)
PROG
(Sage)
def p(n, x): return product(x^j -x-j for j in (1..n))
def A166919(n, k): return ( p(n, x) ).series(x, binomial(n+1, 2)).list()[k]
[1]+flatten([[A166919(n, k) for k in (0..binomial(n+1, 2)-1)] for n in (1..10)]) # G. C. Greubel, Mar 27 2022
CROSSREFS
Sequence in context: A330490 A199063 A140956 * A338874 A338876 A260238
KEYWORD
sign,tabf
AUTHOR
Roger L. Bagula, Oct 23 2009
EXTENSIONS
Edited by G. C. Greubel, Mar 27 2022
STATUS
approved