login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A166453
Triangle read by rows, square of Sierpinski's gasket, (A047999)^2
1
1, 2, 1, 2, 0, 1, 4, 2, 2, 1, 2, 0, 0, 0, 1, 4, 2, 0, 0, 2, 1, 4, 0, 2, 0, 2, 0, 1, 8, 4, 4, 2, 4, 2, 2, 1, 2, 0, 0, 0, 0, 0, 0, 0, 1, 4, 2, 0, 0, 0, 0, 0, 0, 2, 1, 4, 0, 2, 0, 0, 0, 0, 0, 2, 0, 1
OFFSET
0,2
COMMENTS
Row sums = A048883: (1, 3, 3, 9, 3, 9, 9, 27, 3, 9, 9, 27,...)
Left border = A001316
LINKS
E. Burlachenko, Fractal generalized Pascal matrices, arXiv:1612.00970 [math.NT], 2016. See p. 13.
FORMULA
(A047999)^2, as an infinite lower triangular matrix.
EXAMPLE
First few rows of the triangle =
1;
2, 1;
2, 0, 1;
4, 2, 2, 1;
2, 0, 0, 0, 1;
4, 2, 0, 0, 2, 1;
4, 0, 2, 0, 2, 0, 1;
8, 4, 4, 2, 4, 2, 2, 1;
2, 0, 0, 0, 0, 0, 0, 0, 1;
4, 2, 0, 0, 0, 0, 0, 0, 2, 1;
4, 0, 2, 0, 0, 0, 0, 0, 2, 0, 1;
8, 4, 4, 2, 0, 0, 0, 0, 4, 2, 2, 1;
4, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 1;
...
MATHEMATICA
rows = 11;
T = PadRight[#, rows]& /@ Mod[NestList[Prepend[#, 0] + Append[#, 0]&, {1}, rows-1], 2];
T2 = T.T;
Table[T2[[i, j]], {i, 1, rows}, {j, 1, i}] // Flatten (* Jean-François Alcover, Aug 08 2018, after Robert G. Wilson v *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Gary W. Adamson, Oct 13 2009
STATUS
approved