login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 5*n^2 + 5*n - 9.
2

%I #35 Mar 17 2024 02:13:04

%S 1,21,51,91,141,201,271,351,441,541,651,771,901,1041,1191,1351,1521,

%T 1701,1891,2091,2301,2521,2751,2991,3241,3501,3771,4051,4341,4641,

%U 4951,5271,5601,5941,6291,6651,7021,7401,7791,8191,8601,9021,9451,9891,10341

%N a(n) = 5*n^2 + 5*n - 9.

%C First differences are in A008592.

%H Vincenzo Librandi, <a href="/A166150/b166150.txt">Table of n, a(n) for n = 1..1000</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1).

%F a(n) = a(n-1) + 10*n (with a(1)=1).

%F G.f.: x*(1+18*x-9*x^2)/(1-x)^3. - _Vincenzo Librandi_, Sep 13 2013

%F From _G. C. Greubel_, May 01 2016: (Start)

%F a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).

%F E.g.f.: (5*x^2 + 10*x - 9)*exp(x) + 9. (End)

%F Sum_{n>=1} 1/a(n) = 1/9 + (Pi/sqrt(205))*tan(sqrt(41/5)*Pi/2). - _Amiram Eldar_, Feb 20 2023

%p A166150:=n->5*n^2+5*n-9: seq(A166150(n), n=1..100); # _Wesley Ivan Hurt_, May 01 2016

%t Table[(5 n^2 + 5 n - 9), {n, 50}] (* or *) CoefficientList[Series[(1 + 18 x - 9 x^2)/(1 - x)^3, {x, 0, 45}], x] (* _Vincenzo Librandi_, Sep 13 2013 *)

%t LinearRecurrence[{3,-3,1},{1,21,51}, 50] (* _G. C. Greubel_, May 01 2016 *)

%o (PARI) a(n)=5*n*(n+1)-9 \\ _Charles R Greathouse IV_, Jan 11 2012

%o (Magma) [5*n^2+5*n-9: n in [1..45]]; // _Vincenzo Librandi_, Sep 13 2013

%Y Cf. A008592.

%K nonn,easy

%O 1,2

%A _Vincenzo Librandi_, Oct 08 2009

%E a(29)-a(45) corrected by _Charles R Greathouse IV_, Jan 11 2012

%E New name from _Charles R Greathouse IV_, Jan 11 2012