login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A166050
a(n) = Sum_{i=0..(2n+1)} J(i,12n+7), where J(i,k) is the Jacobi symbol.
3
1, -1, 3, -1, 4, -1, 5, -2, 5, -2, 5, -3, 7, -1, 2, -2, 9, -3, 7, -2, 6, -4, 11, -3, 8, -3, 10, -3, 1, -4, 9, -3, 14, -2, 10, -2, 15, -6, 7, 0, 7, -3, 14, -5, 14, -3, 16, -5, 8, -4, 13, -5, 13, -3, 12, -4, 18, -5, 14, -4, 13, -5, 15, -4, 0, -5, 16, -7, 9, -6, 0, -7, 22, -3, 16, -3
OFFSET
0,3
COMMENTS
The height at the 1/6 point of "Jacobi-bridge/path", computed for each odd integer of the form 12n+7.
LINKS
PROG
(MIT Scheme:) (define (A166050 n) (let ((w (A017605 n))) (add (lambda (i) (jacobi-symbol i w)) 0 (/ (-1+ w) 6))))
CROSSREFS
Bisections: A166268, A166269 (see conjectures there). Cf. A017605. Scheme-code for jacobi-symbol is given at A165601.
Sequence in context: A179820 A364098 A363521 * A259655 A221185 A378533
KEYWORD
sign
AUTHOR
Antti Karttunen, Oct 13 2009. Erroneous name corrected Oct 20 2009.
STATUS
approved