login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of acyclic digraphs on n labeled nodes with one source and one sink.
3

%I #15 Apr 15 2023 14:27:43

%S 1,2,12,216,10600,1306620,384471444,261548825328,402632012394000,

%T 1381332938730123060,10440873023366019273820,

%U 172308823347127690038311496,6163501139185639837183141411320,474942255590583211554917995123517868,78430816994991932467786587093292327531620

%N Number of acyclic digraphs on n labeled nodes with one source and one sink.

%H Andrew Howroyd, <a href="/A165950/b165950.txt">Table of n, a(n) for n = 1..50</a>

%H Antoine Genitrini, Martin Pépin, and Alfredo Viola, <a href="https://hal.sorbonne-universite.fr/hal-03029381v2">Unlabelled ordered DAGs and labelled DAGs: constructive enumeration and uniform random sampling</a>, hal-03029381 [math.CO], [cs.DM], [cs.DS], 2020.

%H Ira Gessel, <a href="http://people.brandeis.edu/~gessel/homepage/papers/acyclic.pdf">Counting Acyclic Digraphs by Sources and Sinks</a>

%H Marcel et al., <a href="https://mathoverflow.net/q/395095">Is there a formula for the number of st-dags (DAG with 1 source and 1 sink) with n vertices?</a>, MathOverflow, 2021.

%t nn = 10; B[n_] := n! 2^Binomial[n, 2];e[z_] := Sum[z^n/B[n], {n, 0, nn}];

%t egf[ggf_] := Normal[Series[ggf, {z, 0, nn}]] /. Table[z^i -> z^i*2^Binomial[i, 2], {i, 1, nn + 1}]; Map[ Coefficient[#, u v] &,Table[n!, {n, 0, nn}] CoefficientList[ Series[Exp[(u - 1) (v - 1) z] egf[e[(u - 1) z]*1/e[-z]*e[(v - 1) z]], {z, 0, nn}], z]] (* _Geoffrey Critzer_, Apr 15 2023 *)

%o (PARI) \\ see Marcel et al. link. B(n) is A003025 as vector.

%o B(n)={my(a=vector(n)); a[1]=1; for(n=2, #a, a[n]=sum(k=1, n-1, (-1)^(k-1)*binomial(n,k)*(2^(n-k)-1)^k*a[n-k])); a}

%o seq(n)={my(a=vector(n), b=B(n)); a[1]=1; for(n=2, #a, a[n]=sum(k=1, n-1, (-1)^(k-1) * binomial(n,k) * k * (2^(n-k)-1)^k * b[n-k])); a} \\ _Andrew Howroyd_, Jan 01 2022

%Y The unlabeled version is A345258.

%Y Cf. A003024, A003025, A049524, A361210.

%K nonn

%O 1,2

%A _Vladeta Jovovic_, Oct 01 2009

%E a(1)=1 inserted and terms a(13) and beyond from _Andrew Howroyd_, Jan 01 2022