login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A165950
Number of acyclic digraphs on n labeled nodes with one source and one sink.
3
1, 2, 12, 216, 10600, 1306620, 384471444, 261548825328, 402632012394000, 1381332938730123060, 10440873023366019273820, 172308823347127690038311496, 6163501139185639837183141411320, 474942255590583211554917995123517868, 78430816994991932467786587093292327531620
OFFSET
1,2
LINKS
MATHEMATICA
nn = 10; B[n_] := n! 2^Binomial[n, 2]; e[z_] := Sum[z^n/B[n], {n, 0, nn}];
egf[ggf_] := Normal[Series[ggf, {z, 0, nn}]] /. Table[z^i -> z^i*2^Binomial[i, 2], {i, 1, nn + 1}]; Map[ Coefficient[#, u v] &, Table[n!, {n, 0, nn}] CoefficientList[ Series[Exp[(u - 1) (v - 1) z] egf[e[(u - 1) z]*1/e[-z]*e[(v - 1) z]], {z, 0, nn}], z]] (* Geoffrey Critzer, Apr 15 2023 *)
PROG
(PARI) \\ see Marcel et al. link. B(n) is A003025 as vector.
B(n)={my(a=vector(n)); a[1]=1; for(n=2, #a, a[n]=sum(k=1, n-1, (-1)^(k-1)*binomial(n, k)*(2^(n-k)-1)^k*a[n-k])); a}
seq(n)={my(a=vector(n), b=B(n)); a[1]=1; for(n=2, #a, a[n]=sum(k=1, n-1, (-1)^(k-1) * binomial(n, k) * k * (2^(n-k)-1)^k * b[n-k])); a} \\ Andrew Howroyd, Jan 01 2022
CROSSREFS
The unlabeled version is A345258.
Sequence in context: A123118 A367051 A182161 * A208651 A083667 A374871
KEYWORD
nonn
AUTHOR
Vladeta Jovovic, Oct 01 2009
EXTENSIONS
a(1)=1 inserted and terms a(13) and beyond from Andrew Howroyd, Jan 01 2022
STATUS
approved