login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A165563
a(n) = 1 + 2*n + n^2 + 2*n^3 + n^4.
4
1, 7, 41, 151, 409, 911, 1777, 3151, 5201, 8119, 12121, 17447, 24361, 33151, 44129, 57631, 74017, 93671, 117001, 144439, 176441, 213487, 256081, 304751, 360049, 422551, 492857, 571591, 659401, 756959, 864961, 984127, 1115201, 1258951, 1416169, 1587671
OFFSET
0,2
COMMENTS
Also binomial transform of the quasi-finite sequence 1,6,28,48,24,0 (0 continued).
FORMULA
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) + 24 -> 4th differences are 24 = A010863(n).
G.f.: (-1 - 2*x - 16*x^2 - 6*x^3 + x^4)/(x-1)^5.
MATHEMATICA
Table[1+2n+n^2+2n^3+n^4, {n, 0, 50}] (* or *) LinearRecurrence[{5, -10, 10, -5, 1}, {1, 7, 41, 151, 409}, 50] (* Harvey P. Dale, Nov 13 2021 *)
PROG
(Magma) [1 +2*n +n^2 +2*n^3 +n^4: n in [0..40] ]; // Vincenzo Librandi, Aug 06 2011
(PARI) a(n)=1+2*n+n^2+2*n^3+n^4 \\ Charles R Greathouse IV, Oct 16 2015
CROSSREFS
Sequence in context: A138629 A127923 A230018 * A034575 A237854 A219862
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, Sep 22 2009
EXTENSIONS
Edited and extended by R. J. Mathar, Sep 25 2009
STATUS
approved