OFFSET
0,3
COMMENTS
These permutations have an enumeration scheme of depth 4.
Conjecturally, a(n) is the number of permutations pi of length n such that s(pi) avoids the patterns 231 and 321, where s denotes West's stack-sorting map. - Colin Defant, Sep 17 2018
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..270
J. Bloom and V. Vatter, Two Vignettes On Full Rook Placements, arXiv preprint arXiv:1310.6073 [math.CO], 2013.
J. Bloom and V. Vatter, Two Vignettes On Full Rook Placements, The Australasian Journal of Combinatorics, vol. 64(1), 2016, p. 80.
David Callan, Permutations avoiding 4321 and 3241 have an algebraic generating function, arXiv:1306.3193 [math.CO], 2013.
Colin Defant, Stack-sorting preimages of permutation classes, arXiv:1809.03123 [math.CO], 2018.
Darla Kremer and Wai Chee Shiu, Finite transition matrices for permutations avoiding pairs of length four patterns, Discrete Math. 268 (2003), 171-183. MR1983276 (2004b:05006). See Table 1.
Toufik Mansour, Howard Skogman, and Rebecca Smith, Passing through a stack k times with reversals, arXiv:1808.04199 [math.CO], 2018.
V. Vatter, Enumeration schemes for restricted permutations, Combin., Prob. and Comput. 17 (2008), 137-159.
FORMULA
From Vladimir Kruchinin, May 12 2011: (Start)
a(n) = sum(m=1..n-1, (m*sum(k=1..n-m, (k*binomial(m+2*k-1,m+k-1)*binomial(2*(n-m)-k-1,n-m-1))/(m+k)))/(n-m))+1. (End)
From Gary W. Adamson, Nov 14 2011: (Start)
a(n) is the top left term in M^n, M = an infinite square production matrix with A000108 as the left column, as follows:
1, 1, 0, 0, 0, ...
1, 1, 1, 0, 0, ...
2, 1, 1, 1, 0, ...
5, 1, 1, 1, 1, ...
... (End)
a(n) ~ 2^(4*n + 3/2) / (25 * sqrt(Pi) * n^(3/2) * 3^(n - 3/2)). - Vaclav Kotesovec, Aug 14 2018
EXAMPLE
There are 22 permutations of length 4 which avoid these two patterns, so a(4)=22.
MATHEMATICA
a[0] = 1; a[n_] := Sum[ (m*Sum[ (k*Binomial[m+2*k-1, m+k-1]*Binomial[2*(n-m)-k-1, n-m-1])/(m + k), {k, 1, n-m}])/(n-m), {m, 1, n-1}] + 1; Table[a[n], {n, 0, 27}] (* Jean-François Alcover, Jun 25 2013 *) (* adapted by Vincenzo Librandi, May 14 2017 *)
PROG
(Maxima)
a(n):=if n=0 then 0 else sum((m*sum((k*binomial(m+2*k-1, m+k-1)*binomial(2*(n-m)-k-1, n-m-1))/(m+k), k, 1, n-m))/(n-m), m, 1, n-1)+1; /* Vladimir Kruchinin, May 12 2011 */
CROSSREFS
KEYWORD
nonn
AUTHOR
Vincent Vatter, Sep 21 2009
EXTENSIONS
a(0)=1 prepended by Alois P. Heinz, Feb 18 2016
STATUS
approved