login
A049123
Revert transform of x*(1 - 3*x + x^2)/(1 - 2*x - x^2).
0
1, 1, 2, 6, 22, 89, 380, 1679, 7602, 35072, 164266, 779022, 3733444, 18053457, 87977300, 431628390, 2130222854, 10568712275, 52681070700, 263702193164, 1325015897814, 6680716274936, 33789860569680, 171393770952775
OFFSET
1,3
FORMULA
Recurrence: 5*(n-1)*n*(37*n^2 - 51*n - 286)*a(n) = 24*(n-1)*(74*n^3 - 213*n^2 - 504*n + 1103)*a(n-1) - 8*(629*n^4 - 3383*n^3 - 998*n^2 + 26492*n - 31632)*a(n-2) + 2*(n-4)*(2294*n^3 - 6603*n^2 - 23288*n + 63885)*a(n-3) - 8*(n-5)*(n-4)*(37*n^2 + 23*n - 300)*a(n-4). - Vaclav Kotesovec, Jan 02 2021
MATHEMATICA
Rest[CoefficientList[InverseSeries[Series[x*(1 - 3x + x^2)/(1 - 2x - x^2), {x, 0, 40}], x], x]] (* Vaclav Kotesovec, Jan 02 2021 *)
CROSSREFS
Sequence in context: A165541 A165542 A165543 * A200753 A165544 A150268
KEYWORD
nonn
EXTENSIONS
NAME multiplied by x. - R. J. Mathar, Jul 23 2023
STATUS
approved