login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A165423
a(1) = 1, a(2) = 5, a(n) = product of the previous terms for n >= 3.
4
1, 5, 5, 25, 625, 390625, 152587890625, 23283064365386962890625, 542101086242752217003726400434970855712890625
OFFSET
1,2
LINKS
FORMULA
a(1) = 1, a(2) = 5, a(n) = Product_{i=1..n-1} a(i), n >= 3.
a(1) = 1, a(2) = 5, a(n) = A000351(2^(n-3)) = 5^(2^(n-3)), n >= 3.
a(1) = 1, a(2) = 5, a(3) = 5, a(n) = (a(n-1))^2, n >= 4.
MATHEMATICA
a[1]:= 1; a[2]:= 5; a[n_]:= Product[a[j], {j, 1, n-1}]; Table[a[n], {n, 1, 12}] (* G. C. Greubel, Oct 19 2018 *)
PROG
(PARI) {a(n) = if(n==1, 1, if(n==2, 5, prod(j=1, n-1, a(j))))};
for(n=1, 10, print1(a(n), ", ")) \\ G. C. Greubel, Oct 19 2018
CROSSREFS
Sequence in context: A222281 A214706 A203191 * A220078 A302000 A219351
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, Sep 17 2009
STATUS
approved