login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A165419
Each a(n) is chosen so that n = sum a(k), for all n >= 0, where k is over the distinct nonnegative values of the substrings in binary n.
0
0, 1, 1, 2, 2, 3, 2, 4, 4, 5, 5, 4, 4, 4, 4, 8, 8, 9, 9, 8, 8, 11, 9, 8, 8, 8, 8, 10, 8, 8, 8, 16, 16, 17, 17, 16, 18, 16, 17, 16, 16, 16, 21, 16, 16, 19, 17, 16, 16, 16, 16, 18, 16, 16, 18, 16, 16, 16, 16, 16, 16, 16, 16, 32, 32, 33, 33, 32, 34, 32, 33, 32, 32, 37, 32, 32, 34, 32, 33
OFFSET
0,4
COMMENTS
We could have instead taken k over the distinct positive values of the substrings in binary n, and get the same sequence, since a(0)=0.
The distinct nonnegative values of the substrings of binary n is row n of table A119709. The distinct positive values of the substrings of binary n is row n of table A165416.
EXAMPLE
9 in binary is 1001. The distinct nonnegative integers that occur as substrings in binary 9 are 0, 1, 2 (10 in binary), 4 (100 in binary), and 9 (1001 in binary). And 9 = a(0) + a(1) + a(2) + a(4) + a(9) = 0 + 1 + 1 + 2 + 5.
CROSSREFS
Sequence in context: A048620 A291271 A308318 * A117660 A358015 A184198
KEYWORD
base,nonn
AUTHOR
Leroy Quet, Sep 17 2009
EXTENSIONS
Extended by Ray Chandler, Mar 13 2010
STATUS
approved