login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A165322
a(0)=1, a(1)=7, a(n)=15*a(n-1)-49*a(n-2) for n>1.
2
1, 7, 56, 497, 4711, 46312, 463841, 4688327, 47596696, 484222417, 4931098151, 50239573832, 511969798081, 5217807853447, 53180597695736, 542036380617137, 5524696422165991, 56310663682250152, 573949830547618721
OFFSET
0,2
COMMENTS
a(n)/a(n-1) tends to (15+sqrt(29))/2=10,192582...
For n>=2, a(n) equals 7^n times the permanent of the (2n-2)X(2n-2) tridiagonal matrix with 1/sqrt(7)'s along the main diagonal, and 1's along the superdiagonal and the subdiagonal. [John M. Campbell, Jul 08 2011]
FORMULA
G.f.: (1-8x)/(1-15x+49x^2).
a(n) = Sum_{k=0..n} A165253(n,k)*7^(n-k).
a(n) = ((29-sqrt(29))*(15+sqrt(29))^n+(29+sqrt(29))*(15-sqrt(29))^n )/(58*2^n). [Klaus Brockhaus, Sep 26 2009]
MATHEMATICA
LinearRecurrence[{15, -49}, {1, 7}, 20] (* Harvey P. Dale, Jun 04 2021 *)
CROSSREFS
Cf. A165253.
Sequence in context: A145302 A233669 A265233 * A082305 A144263 A001730
KEYWORD
nonn
AUTHOR
Philippe Deléham, Sep 14 2009
STATUS
approved