The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A165281 a(n) = (n+1)*(6*n^4 - 51*n^3 + 161*n^2 - 251*n + 251). 3
251, 232, 243, 224, 475, 2376, 9107, 26368, 63099, 132200, 251251, 443232, 737243, 1169224, 1782675, 2629376, 3770107, 5275368, 7226099, 9714400, 12844251, 16732232, 21508243, 27316224, 34314875, 42678376, 52597107, 64278368, 77947099 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,1
COMMENTS
The sequence is the numerators of the fifth column of the array on page 56 of the reference. The denominators are A091137(4)=720.
The sequence is the binomial transform of the quasi-finite 251, -19, 30, -60, 360, 720, 0, 0, 0, 0, ...
The fifth differences are (constant) 720; the fourth differences are 720*n + 360.
REFERENCES
P. Curtz, Integration numerique des systemes differentiels a conditions initiales, C.C.S.A., Arcueil, 1969.
LINKS
FORMULA
a(n) mod 10 = A010879(n+1).
a(n+1) - a(n) = A157411(n).
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6).
G.f.: ( 251 - 1274*x + 2616*x^2 - 2774*x^3 + 1901*x^4 ) / (x-1)^6. - R. J. Mathar, Jul 06 2011
MATHEMATICA
Table[(n+1)(6n^4-51n^3+161n^2-251n+251), {n, 0, 30}] (* or *) LinearRecurrence[{6, -15, 20, -15, 6, -1}, {251, 232, 243, 224, 475, 2376}, 30] (* Harvey P. Dale, Aug 20 2014 *)
PROG
(Magma) [(n+1)*(6*n^4-51*n^3+161*n^2-251*n+251): n in [0..30]]; // Vincenzo Librandi, Aug 07 2011
CROSSREFS
Sequence in context: A267972 A267995 A201547 * A033449 A271581 A142419
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, Sep 13 2009
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 25 09:23 EDT 2024. Contains 372786 sequences. (Running on oeis4.)