login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A165255
Solinas primes; primes of the form p = 2^a +/- 2^b +/- 1 where 0 < b < a.
1
3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 47, 59, 61, 67, 71, 73, 79, 97, 113, 127, 131, 137, 191, 193, 223, 239, 241, 251, 257, 263, 271, 383, 449, 479, 503, 509, 521, 577, 641, 769, 991, 1009, 1019, 1021, 1031, 1033, 1039, 1087, 1151, 1153, 1279, 2017
OFFSET
1,1
COMMENTS
The primes not in the sequence are 43, 53, 83, 89, 101, 103, 107, 109, 139,... - R. J. Mathar, Sep 18 2009
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Ernest G. Hibbs, Component Interactions of the Prime Numbers, Ph. D. Thesis, Capitol Technology Univ. (2022), see p. 33.
Jerome A. Solinas, Generalized Mersenne numbers (1999)
Wikipedia, Solinas prime
FORMULA
Trivially, a(n) >> exp(sqrt(2n)). - Charles R Greathouse IV, Dec 04 2012
EXAMPLE
3 = 2^3 - 2^2 - 1.
5 = 2^3 - 2^2 + 1.
7 = 2^4 - 2^3 - 1.
11 = 2^3 + 2^2 - 1.
13 = 2^3 + 2^2 + 1.
17 = 2^5 - 2^4 + 1.
19 = 2^4 + 2^2 - 1.
23 = 2^4 + 2^3 - 1.
PROG
(PARI) go(n)=my(v=List(), ta, tb); for(a=2, n, ta=2^a; tb=1; for(b=1, a-1, tb<<=1; if(ispseudoprime(ta+tb+1), listput(v, ta+tb+1)); if(ispseudoprime(ta+tb-1), listput(v, ta+tb-1)); if(ispseudoprime(ta-tb+1), listput(v, ta-tb+1)); if(ispseudoprime(ta-tb-1), listput(v, ta-tb-1)))); vecsort(Vec(v), , 8) \\ Charles R Greathouse IV, Dec 04 2012
CROSSREFS
Sequence in context: A020615 A172146 A225670 * A223036 A155058 A007703
KEYWORD
nonn
AUTHOR
Paul Muljadi, Sep 11 2009
EXTENSIONS
More terms from Max Alekseyev and R. J. Mathar, Sep 17 2009
STATUS
approved