login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A164737
a(n) = 8*a(n-2) for n > 2; a(1) = 5, a(2) = 12.
5
5, 12, 40, 96, 320, 768, 2560, 6144, 20480, 49152, 163840, 393216, 1310720, 3145728, 10485760, 25165824, 83886080, 201326592, 671088640, 1610612736, 5368709120, 12884901888, 42949672960, 103079215104, 343597383680, 824633720832
OFFSET
1,1
COMMENTS
Interleaving of 5*A001018 and 12*A001018.
Binomial transform is A096980 without initial terms 1. Second binomial transform is A164593. Third binomial transform is A101386.
FORMULA
a(n) = (13 - 7*(-1)^n)*2^(1/4*(6*n - 11 + 3*(-1)^n)).
G.f.: x*(5 + 12*x)/(1 - 8*x^2).
MAPLE
seq(coeff(series( x*(5+12*x)/(1-8*x^2) , x, n+1), x, n), n=1..30); # G. C. Greubel, Apr 16 2020
MATHEMATICA
LinearRecurrence[{0, 8}, {5, 12}, 30] (* G. C. Greubel, Apr 16 2020 *)
PROG
(Magma) [ n le 2 select 7*n-2 else 8*Self(n-2): n in [1..26] ];
(Sage) [(13 -7*(-1)^n)*2^((6*n -11 +3*(-1)^n)/4) for n in (1..30)] # G. C. Greubel, Apr 16 2020
CROSSREFS
Cf. A001018 (powers of 8), A067412, A096980, A101386, A164593.
Sequence in context: A233007 A221795 A092772 * A120779 A082189 A129795
KEYWORD
nonn
AUTHOR
Klaus Brockhaus, Aug 24 2009
STATUS
approved