OFFSET
1,1
COMMENTS
Semiprimes pq such that pq-1 divides (p+q)^2.
The third to fifth terms are Fib(3)*Fib(7), Fib(7)*Fib(11) and Fib(13)*Fib(17).
Products of two prime Fibonacci numbers F(k) and F(k+4) (see A001605 and A005478) are in the sequence.
6 and 26 are the only even terms. Odd terms contain products of pairs of consecutive terms from the following sequences: A005248, A001541, A033889, A033891. - Max Alekseyev, Aug 27 2009
EXAMPLE
The semiprime 6 = 2*3 is in the sequence because 2*3 - 1 = 5 divides 2^2 + 3^2 + 2 = 15.
MAPLE
isA001358 := proc(n) RETURN ( numtheory[bigomega](n) =2 ) ; end:
isA164698 := proc(n) if isA001358(n) then p := op(1, op(1, ifactors(n)[2]) ) ; q := n/p ; if (p^2+q^2+2) mod (p*q-1) = 0 then true; else false; fi; else false; fi; end:
for n from 4 to 3000000 do if isA164698(n) then print(n, ifactors(n)) ; fi; od: # R. J. Mathar, Aug 24 2009
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Mohamed Bouhamida, Aug 22 2009
EXTENSIONS
Missing values added by R. J. Mathar, Aug 24 2009
a(7) from Max Alekseyev, Aug 27 2009
STATUS
approved