login
A164077
Prime p1 of the form a^b + c^d = p1, where a, b, c, d are primes and a + b + c + d = p2, where p2 (A164078) is prime and conc(abcd) = p3 (concatenation of a, b, c , d) is also prime (A164079).
2
3253, 24517, 78157, 366103, 548677, 705097, 1030429, 1229257, 5735467, 6438391, 12221371, 17498881, 19618243, 74084347, 118370899, 263374849, 270840151, 286199371, 410180599, 418195621, 418719781, 529483321, 565609411, 698388391
OFFSET
1,1
EXAMPLE
5^5 + 2^7 = 3253, 5 + 5 + 2 + 7 = 19, conc (abcd) = 5527; 29^3 + 2^7 = 24517, 29 + 3 + 2 + 7 = 41, conc (abcd) = 29327; 2^5 + 5^7 = 78157, 2 + 5 + 5 + 7 = 19, conc (abcd) = 2557; 2^13 + 71^3 = 366103, 2 + 13 + 71 + 3 = 89, conc (abcd) = 89; 213713
CROSSREFS
Sequence in context: A270799 A031735 A144936 * A183656 A043606 A135134
KEYWORD
nonn,base
AUTHOR
Oleg Zyakun, Aug 12 2009
EXTENSIONS
Extended and edited by Charles R Greathouse IV, Apr 27 2010
STATUS
approved