login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A163984
First differences of A056737.
0
1, 1, -2, 4, -3, 5, -4, -2, 3, 7, -9, 11, -7, -3, -2, 16, -13, 15, -17, 3, 5, 13, -20, -2, 11, -5, -3, 25, -27, 29, -26, 4, 7, -13, -2, 36, -19, -7, -7, 37, -39, 41, -35, -3, 17, 25, -44, -2, 5, 9, -5, 43, -49, 3, -5, 15, 11, 31, -54, 56, -31, -27, -2, 8, -3, 61, -53, 7, -17, 67, -69, 71, -37, -25, 5, -11, 3, 71, -76, -2, 39, 43, -77, 7, 29, -15
OFFSET
1,3
MAPLE
A033676 := proc(n) local a, d; a := 0 ; for d in numtheory[divisors](n) do if d^2 <= n then a := max(a, d) ; fi; od: a; end:
A033677 := proc(n) local a, d; a := n ; for d in numtheory[divisors](n) do if d^2 >= n then a := min(a, d) ; fi; od: a; end proc:
A056737 := proc(n) A033677(n)-A033676(n) ; end proc:
[seq(A056737(n), n=1..120)] ;
DIFF(%) ;
KEYWORD
easy,sign
AUTHOR
Omar E. Pol, Aug 12 2009
STATUS
approved