

A163522


a(1)=2; for n>1, a(n) = sum of digits of a(n1)^2.


2



2, 4, 7, 13, 16, 13, 16, 13, 16, 13, 16, 13, 16, 13, 16, 13, 16, 13, 16, 13, 16, 13, 16, 13, 16, 13, 16, 13, 16, 13, 16, 13, 16, 13, 16, 13, 16, 13, 16, 13, 16, 13, 16, 13, 16, 13, 16, 13, 16, 13, 16, 13, 16, 13, 16, 13, 16, 13, 16, 13, 16, 13, 16, 13, 16, 13, 16
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


LINKS



FORMULA

G.f.: x*(2 + 4*x + 5*x^2 + 9*x^3 + 9*x^4)/((1  x)*(1 + x)).  Bruno Berselli, May 29 2014


EXAMPLE

a(2)=4 because 2^2=4;
a(3)=7 because 4^2=16 and 6+1=7;
a(4)=13 because 7^2=49 and 4+9=13.
Other similar sequences, starting from 3, 5, 7 respectively:
. 3, 9 (9 repeated);
. 5, 7, 13, 16, 13 (13, 16 repeated);
. 8, 10, 1 (1 repeated).


MATHEMATICA

Join[{2, 4, 7}, LinearRecurrence[{0, 1}, {13, 16}, 50]] (* or *) CoefficientList[Series[x*(2 + 4*x + 5*x^2 + 9*x^3 + 9*x^4)/((1  x)*(1 + x)), {x, 0, 50}], x] (* G. C. Greubel, Jul 27 2017 *)


PROG

(PARI) x='x+O('x^50); Vec(x*(2 + 4*x + 5*x^2 + 9*x^3 + 9*x^4)/((1  x)*(1 + x))) \\ G. C. Greubel, Jul 27 2017
(Scheme) (define (A163522 n) (cond ((<= n 2) (expt 2 n)) ((= 3 n) 7) ((even? n) 13) (else 16))) ;; Antti Karttunen, Sep 14 2017


CROSSREFS



KEYWORD

nonn,base,easy


AUTHOR



EXTENSIONS



STATUS

approved



