Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 Feb 03 2018 09:53:24
%S 23,337,2293,3557,9941,21347,39233,87403,251221,333367,895253,1080647,
%T 1217473,1696207,2076563,2626933,2999707,4493837,6203297,6857033,
%U 8045953,8299127,8821297,11442817,13807361,14538187,17298497,21333467
%N Primes of the form (1 + k + k^3)/3.
%C k must be congruent to 1 (mod 3) for (k^3 + k + 1)/3 to be an integer. - _Michael B. Porter_, Apr 07 2010
%H J. Mulder, <a href="/A163512/b163512.txt">Table of n, a(n) for n = 1..40000</a>
%e (1 + 4 + 4^3)/3 = 23.
%t f[n_]:=(1+n+n^3)/3; lst={};Do[If[PrimeQ[f[n]],AppendTo[lst,f[n]]],{n,7!}];lst
%t Select[Table[(n^3+n+1)/3,{n,400}],PrimeQ] (* _Harvey P. Dale_, Aug 28 2012 *)
%o (PARI) for(n=0,200,m=3*n+1;if(isprime((m^3+m+1)/3),print((m^3+m+1)/3))) \\ _Michael B. Porter_, Apr 07 2010
%K nonn
%O 1,1
%A _Vladimir Joseph Stephan Orlovsky_, Jul 29 2009