login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A163512
Primes of the form (1 + k + k^3)/3.
2
23, 337, 2293, 3557, 9941, 21347, 39233, 87403, 251221, 333367, 895253, 1080647, 1217473, 1696207, 2076563, 2626933, 2999707, 4493837, 6203297, 6857033, 8045953, 8299127, 8821297, 11442817, 13807361, 14538187, 17298497, 21333467
OFFSET
1,1
COMMENTS
k must be congruent to 1 (mod 3) for (k^3 + k + 1)/3 to be an integer. - Michael B. Porter, Apr 07 2010
EXAMPLE
(1 + 4 + 4^3)/3 = 23.
MATHEMATICA
f[n_]:=(1+n+n^3)/3; lst={}; Do[If[PrimeQ[f[n]], AppendTo[lst, f[n]]], {n, 7!}]; lst
Select[Table[(n^3+n+1)/3, {n, 400}], PrimeQ] (* Harvey P. Dale, Aug 28 2012 *)
PROG
(PARI) for(n=0, 200, m=3*n+1; if(isprime((m^3+m+1)/3), print((m^3+m+1)/3))) \\ Michael B. Porter, Apr 07 2010
CROSSREFS
Sequence in context: A220648 A243422 A028110 * A028059 A299710 A028055
KEYWORD
nonn
AUTHOR
STATUS
approved