login
A163494
a(n) = (4*n)!*((2*n)!)^2.
1
1, 96, 23224320, 248314429440000, 34014229735617331200000, 32036914532626424502681600000000, 142357252766974714824047503972761600000000
OFFSET
0,2
COMMENTS
Integral representation as n-th moment of a positive function on a positive halfaxis (solution of the Stieltjes moment problem), in Maple notation:
a(n) = integral(x^n*(2*MeijerG([[], []], [[2, 2, 2, 3/2], []], (1/4)*sqrt(x))/(sqrt(Pi)*x^(3/2))), x=0..infinity), n=0,1,... . This solution may not be unique.
LINKS
MATHEMATICA
Table[(4*n)!*((2*n)!)^2, {n, 0, 25}] (* G. C. Greubel, Jul 26 2017 *)
PROG
(PARI) a(n)=(4*n)!*((2*n)!)^2 \\ Charles R Greathouse IV, Jul 15 2011
CROSSREFS
Sequence in context: A008702 A133402 A249922 * A117846 A058286 A051330
KEYWORD
nonn,easy
AUTHOR
Karol A. Penson, Jul 29 2009
STATUS
approved