login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A163301
a(n) = Sum_{x=n-th even nonprime..n-th odd nonprime} -x*(-1)^x.
1
1, 3, 5, 7, 8, 8, 10, 10, 11, 13, 14, 14, 15, 15, 17, 17, 18, 20, 20, 21, 22, 22, 23, 23, 23, 24, 26, 28, 29, 29, 29, 29, 29, 29, 30, 31, 31, 33, 33, 33, 33, 35, 35, 36, 36, 37, 38, 38, 39, 39, 41, 41, 41, 41, 43, 45, 45, 45, 45, 45, 46, 46, 46, 46, 46, 47, 49, 50, 50, 52, 52
OFFSET
1,2
COMMENTS
Here n-th even nonprime = A163300(n), n-th odd nonprime = A014076(n) and A163300 U A014076 = A141468.
FORMULA
a(n) = Sum_{x=A163300(n)..A014076(n)}-x*(-1)^x.
a(n) = A001057( A014076(n)) - A001057(A163300(n)-1). - R. J. Mathar, May 21 2010
EXAMPLE
a(1) = -0*(-1)^0 - 1*(-1)^1 = 0 + 1 = 1;
a(2) = -4*(-1)^4 - 5*(-1)^5 - 6*(-1)6 - 7*(-1)^7 - 8*(-1)^8 - 9*(-1)^9 = -4 + 5 - 6 + 7 - 8 + 9 = 3.
MAPLE
A163300 := proc(n) if n <= 2 then op(n, [0, 4]) ; else for a from procname(n-1)+2 by 2 do if not isprime(a) then return a; end if; end do; end if; end proc:
A014076 := proc(n) if n = 1 then 1; else for a from procname(n-1)+2 by 2 do if not isprime(a) then return a ; end if; end do: end if; end proc:
A001057 := proc(n) (1-(-1)^n*(2*n+1))/4; end proc:
A163301 := proc(n) A001057( A014076(n)) - A001057(A163300(n)-1) ; end proc: seq(A163301(n), n=1..120) ; # R. J. Mathar, May 21 2010
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
Corrected from a(39) onwards by R. J. Mathar, May 21 2010
STATUS
approved