login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A163196
a(n) = L(n)^2 * F(n+1)^2 * L(n-1) * F(n+2), where F(n) and L(n) are the Fibonacci and Lucas numbers, respectively.
6
-4, 4, 108, 2160, 39200, 704704, 12648636, 226979172, 4072998380, 73087049200, 1311494037696, 23533806023424, 422297015415548, 7577812474157380, 135978327526488300, 2440032083021144304, 43784599166902574816, 785682752921352087232, 14098504953417767184060, 252987406408599326907300
OFFSET
0,1
COMMENTS
Natural bilateral extension (brackets mark index 0): ..., 39204, 2156, 112, 0, 0, [-4], 4, 108, 2160, 39200, 704704, ... This is A163194-reversed followed by A163196. That is, A163196(-n) = A163194(n-1).
LINKS
Stuart Clary and Paul D. Hemenway, On sums of cubes of Fibonacci numbers, Applications of Fibonacci Numbers, Vol. 5 (St. Andrews, 1992), 123-136, Kluwer Acad. Publ., 1993. See equation (3).
FORMULA
Let F(n) be the Fibonacci number A000045(n) and let L(n) be the Lucas number A000032(n).
a(n) = L(n)^2 * F(n+1)^2 * L(n-1) * F(n+2).
a(n) = (1/5)*(F(6n+3) - 12*F(2n+1) - 10*(-1)^n).
a(n) = F(2n+1)^3 - 3*F(2n+1) - 2*(-1)^n.
a(n) = 4*Sum_{k=2..n} F(2k)^3 = 4*A163199(n) if n is even.
a(n) = 4*Sum_{k=1..n} F(2k)^3 = 4*A163198(n) if n is odd.
a(n) - 21 a(n-1) + 56 a(n-2) - 21 a(n-3) + a(n-4) = - 200*(-1)^n.
a(n) - 20 a(n-1) + 35 a(n-2) + 35 a(n-3) - 20 a(n-4) + a(n-5) = 0.
G.f.: (-4 + 84*x - 112*x^2)/(1 - 20*x + 35*x^2 + 35*x^3 - 20*x^4 + x^5) = -4*(1 - 21*x + 28*x^2)/((1 + x)*(1 - 3*x + x^2)*(1 - 18*x + x^2)).
A163194(n) - a(n) = 4*(-1)^n.
MATHEMATICA
a[n_Integer] := LucasL[n]^2*Fibonacci[n+1]^2*LucasL[n-1] *Fibonacci[n+2]
LinearRecurrence[{20, -35, -35, 20, -1}, {-4, 4, 108, 2160, 39200}, 50] (* or *) Table[(1/5)*(Fibonacci[6*n+3] - 12*Fibonacci[2*n+1] - 10*(-1)^n), {n, 0, 25}] (* G. C. Greubel, Dec 09 2016 *)
PROG
(PARI) Vec( -4*(1 - 21*x + 28*x^2)/((1 + x)*(1 - 3*x + x^2)*(1 - 18*x + x^2)) + O(x^50)) \\ G. C. Greubel, Dec 09 2016
(PARI) for(n=0, 30, print1((1/5)*(fibonacci(6*n+3) - 12*fibonacci(2*n+1) - 10*(-1)^n), ", ")) \\ G. C. Greubel, Dec 21 2017
(Magma) [(Lucas(n)*Fibonacci(n+1))^2*(Lucas(n-1)*Fibonacci(n+2)): n in [0..30]]; // G. C. Greubel, Dec 21 2017
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Stuart Clary, Jul 24 2009
STATUS
approved