login
A163175
Number of reduced words of length n in Coxeter group on 25 generators S_i with relations (S_i)^2 = (S_i S_j)^4 = I.
0
1, 25, 600, 14400, 345300, 8280000, 198547500, 4761000000, 114164729700, 2737573095600, 65644673871900, 1574103433035600, 37745661174674100, 905108843301991200, 21703740051934476300, 520437222249938431200
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A170744, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
FORMULA
G.f.: (t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(276*t^4 - 23*t^3 - 23*t^2 - 23*t + 1).
MATHEMATICA
CoefficientList[Series[(t^4 + 2 t^3 + 2 t^2 + 2 t + 1)/(276 t^4 - 23 t^3 - 23 t^2 - 23 t + 1), {t, 0, 20}], t] (* Jinyuan Wang, Mar 23 2020 *)
coxG[{4, 276, -23}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Aug 16 2023 *)
CROSSREFS
Sequence in context: A159661 A104643 A162811 * A163525 A163993 A164638
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved