login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A162314
Row sums of A162313.
3
1, 4, 24, 208, 2400, 34624, 599424, 12107008, 279467520, 7257355264, 209403009024, 6646303019008, 230126121738240, 8632047179874304, 348695526455476224, 15091839203924574208, 696733490476660162560
OFFSET
0,2
COMMENTS
Conjecture: for fixed k = 1,2,..., the sequence obtained by reducing a(n) modulo k is eventually periodic with the exact period dividing phi(k), where phi(k) is the Euler totient function A000010. For example, modulo 24 the sequence becomes [1, 4, 0, 16, 0 16, 0, 16, ...] with an apparent period of 2 beginning at a(2). - Peter Bala, Jul 08 2022
FORMULA
a(n) = 2^n*A000629(n) = 2^n*Sum_{k = 0..n} k!*Stirling2(n+1,k+1).
E.g.f.: exp(2*x)/(2-exp(2*x)) = 1 + 4*x + 24*x^2/2! + 208*x^3/3! + ....
G.f.: 2/G(0), where G(k) = 1 + 1/(1 - 8*x*(k+1)/(8*x*(k+1) - 1 + 4*x*(k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 30 2013
From Peter Bala, Jul 08 2022: (Start)
a(n) = Sum_{k = 0..n} (-2)^(n+k)*k!*Stirling2(n,k).
Conjectural o.g.f. as a continued fraction of Stieltjes type: 1/(1 - 4*x/(1 - 2*x/(1 - 8*x/(1 - 4*x/(1 - ... - 3*n*x/(1 - 2*n*x/(1 - ...))))))). (End)
MAPLE
with(combinat):
a:= n -> 2^n*add(k!*Stirling2(n+1, k+1), k = 0..n):
seq(a(n), n = 0..16);
CROSSREFS
Sequence in context: A297218 A010039 A245407 * A369723 A323869 A112141
KEYWORD
easy,nonn
AUTHOR
Peter Bala, Jul 01 2009
STATUS
approved