login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A162143
a(n) = A007304(n)^2.
11
900, 1764, 4356, 4900, 6084, 10404, 11025, 12100, 12996, 16900, 19044, 23716, 27225, 28900, 30276, 33124, 34596, 36100, 38025, 49284, 52900, 53361, 56644, 60516, 65025, 66564, 70756, 74529, 79524, 81225, 81796, 84100, 96100, 101124
OFFSET
1,1
COMMENTS
Numbers that are the product of exactly 3 distinct squares of primes (p^2*q^2*r^2).
FORMULA
A050326(a(n)) = 8. - Reinhard Zumkeller, May 03 2013
Sum_{n>=1} 1/a(n) = (P(2)^3 + 2*P(6) - 3*P(2)*P(4))/6 = (A085548^3 + 2*A085966 - 3*A085548*A085964)/6 = 0.0036962441..., where P is the prime zeta function. - Amiram Eldar, Oct 30 2020
EXAMPLE
900 = 2^2*3^2*5^2, 1764 = 2^2*3^2*7^2, 4356 = 2^2*3^2*11^2, ..
MATHEMATICA
fQ[n_]:=Last/@FactorInteger[n]=={2, 2, 2}; Select[Range[100000], f]
PROG
(Python)
from math import isqrt
from sympy import primepi, primerange, integer_nthroot
def A162143(n):
def f(x): return int(n+x-sum(primepi(x//(k*m))-b for a, k in enumerate(primerange(integer_nthroot(x, 3)[0]+1), 1) for b, m in enumerate(primerange(k+1, isqrt(x//k)+1), a+1)))
def bisection(f, kmin=0, kmax=1):
while f(kmax) > kmax: kmax <<= 1
while kmax-kmin > 1:
kmid = kmax+kmin>>1
if f(kmid) <= kmid:
kmax = kmid
else:
kmin = kmid
return kmax
return bisection(f)**2 # Chai Wah Wu, Aug 29 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
Edited by N. J. A. Sloane, Jun 27 2009
STATUS
approved