login
A161933
Number of reduced words of length n in the Weyl group B_26.
0
1, 26, 350, 3250, 23399, 139204, 712179, 3220074, 13124124, 48942894, 168958960, 544988210, 1655019795, 4761697020, 13048465756, 34209731996, 86141195946, 209025000936, 490211005011, 1113996801606, 2458618650891, 5280637344216
OFFSET
0,2
COMMENTS
Computed with MAGMA using commands similar to those used to compute A161409.
REFERENCES
J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See under Poincaré polynomial.
N. Bourbaki, Groupes et alg. de Lie, Chap. 4, 5, 6. (The group is defined in Planche II.)
FORMULA
G.f. for B_m is the polynomial Prod_{k=1..m}(1-x^(2k))/(1-x). Only finitely many terms are nonzero. This is a row of the triangle in A128084.
CROSSREFS
Sequence in context: A053494 A054938 A161526 * A162368 A225979 A162718
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Nov 30 2009
STATUS
approved