login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Partial sums of A161841.
3

%I #15 Jan 01 2024 19:57:37

%S 2,4,6,10,12,16,18,22,26,30,32,38,40,44,48,54,56,62,64,70,74,78,80,88,

%T 92,96,100,106,108,116,118,124,128,132,136,146,148,152,156,164,166,

%U 174,176,182,188,192,194,204,208,214,218,224,226,234,238,246

%N Partial sums of A161841.

%H David A. Corneth, <a href="/A161842/b161842.txt">Table of n, a(n) for n = 1..10000</a>

%H Michael Penn, <a href="https://www.youtube.com/watch?v=SEHhzkH3ZqM">This is always even??</a>, YouTube video, 2020.

%F a(n) = 2*A094820(n).

%F a(n) = Sum_{i=1..n} (1 + A008836(i))*floor(n/i)). - _Enrique Pérez Herrero_, Jul 10 2012

%F a(n) ~ (log(n) + 2*gamma - 1)*n + sqrt(n), where gamma is the Euler-Mascheroni constant A001620. - _Vaclav Kotesovec_, Jul 01 2021

%o (PARI) a(n) = sum(i=1, n, floor(n/i)) + sqrtint(n) \\ _David A. Corneth_, Dec 17 2020

%o (PARI) first(n) = {my(res = vector(n), t = 0); for(i = 1, n, t+=(numdiv(i)+issquare(i)); res[i] = t ); res } \\ _David A. Corneth_, Dec 17 2020

%Y Cf. A001620, A008836, A038548, A094820, A161841.

%K nonn,easy

%O 1,1

%A _Omar E. Pol_, Jun 23 2009