

A161841


Number of factors, with repetition, in all distinct pairs (a <= b) such that a*b = n.


7



2, 2, 2, 4, 2, 4, 2, 4, 4, 4, 2, 6, 2, 4, 4, 6, 2, 6, 2, 6, 4, 4, 2, 8, 4, 4, 4, 6, 2, 8, 2, 6, 4, 4, 4, 10, 2, 4, 4, 8, 2, 8, 2, 6, 6, 4, 2, 10, 4, 6, 4, 6, 2, 8, 4, 8, 4, 4, 2, 12, 2, 4, 6, 8, 4, 8, 2, 6, 4, 8, 2, 12, 2, 4, 6, 6, 4, 8, 2, 10, 6, 4, 2, 12, 4, 4, 4, 8, 2, 12, 4, 6, 4, 4, 4, 12, 2, 6, 6, 10
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


LINKS

Robert Israel, Table of n, a(n) for n = 1..10000


FORMULA

a(n) = A000005(n) + A010052(n) = A038548(n)*2.
Sum_{k=1..n} a(k) ~ (log(n) + 2*gamma  1)*n + sqrt(n), where gamma is the EulerMascheroni constant A001620.  Vaclav Kotesovec, Jul 01 2021


EXAMPLE

a(16)=6 because there are three distinct pairs (a <= b) such that a*b = n: the pairs (1,16), (2,8) and (4,4). So the number of factors, with repetition, in all the pairs is equal to 6.


MAPLE

seq(numtheory:tau(n) + `if`(issqr(n), 1, 0), n = 1 .. 200); # Robert Israel, Dec 23 2015


CROSSREFS

Cf. A000005, A010052, A038548, A161842.
Sequence in context: A332347 A201353 A072048 * A335901 A152674 A072056
Adjacent sequences: A161838 A161839 A161840 * A161842 A161843 A161844


KEYWORD

easy,nonn


AUTHOR

Omar E. Pol, Jun 23 2009


STATUS

approved



