Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #48 Sep 08 2022 08:45:45
%S 9479,8563,7649,6737,5827,4919,4013,3109,2207,1307,409,-487,-1381,
%T -2273,-3163,-4051,-4937,-5821,-6703,-7583,-8461,-9337,-10211,-11083,
%U -11953,-12821,-13687,-14551,-15413,-16273,-17131,-17987,-18841,-19693,-20543,-21391,-22237
%N a(n) = n^2 - 917*n + 9479.
%C A prime-generating polynomial of the form f(x)=x^2-b*x+c.
%C |a(n)| are distinct primes for n = 0 to 29.
%C The values of this polynomial are never divisible by a prime less than 37. - _Arkadiusz Wesolowski_, Oct 11 2011
%H Arkadiusz Wesolowski, <a href="/A161726/b161726.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1).
%F G.f.: (-9479+19874*x-10397*x^2)/(x-1)^3. - _R. J. Mathar_, Mar 08 2011
%p seq(n^2-917*n+9479, n=0..36); # _Arkadiusz Wesolowski_, Mar 08 2011
%t Table[n^2 - 917*n + 9479, {n, 0, 36}] (* _Arkadiusz Wesolowski_, Mar 04 2011 *)
%o (Magma) [n^2-917*n+9479 : n in [0..36]]; // _Arkadiusz Wesolowski_, Mar 04 2011
%o (PARI) for(n=0, 36, print1(n^2-917*n+9479, ", ")); \\ _Arkadiusz Wesolowski_, Mar 02 2011
%Y Cf. A005846, A007635, A048059.
%K easy,sign
%O 0,1
%A _Arkadiusz Wesolowski_, Jun 17 2009
%E Definition and offset changed by _R. J. Mathar_, Jun 18 2009