login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A161726
a(n) = n^2 - 917*n + 9479.
1
9479, 8563, 7649, 6737, 5827, 4919, 4013, 3109, 2207, 1307, 409, -487, -1381, -2273, -3163, -4051, -4937, -5821, -6703, -7583, -8461, -9337, -10211, -11083, -11953, -12821, -13687, -14551, -15413, -16273, -17131, -17987, -18841, -19693, -20543, -21391, -22237
OFFSET
0,1
COMMENTS
A prime-generating polynomial of the form f(x)=x^2-b*x+c.
|a(n)| are distinct primes for n = 0 to 29.
The values of this polynomial are never divisible by a prime less than 37. - Arkadiusz Wesolowski, Oct 11 2011
FORMULA
G.f.: (-9479+19874*x-10397*x^2)/(x-1)^3. - R. J. Mathar, Mar 08 2011
MAPLE
seq(n^2-917*n+9479, n=0..36); # Arkadiusz Wesolowski, Mar 08 2011
MATHEMATICA
Table[n^2 - 917*n + 9479, {n, 0, 36}] (* Arkadiusz Wesolowski, Mar 04 2011 *)
PROG
(Magma) [n^2-917*n+9479 : n in [0..36]]; // Arkadiusz Wesolowski, Mar 04 2011
(PARI) for(n=0, 36, print1(n^2-917*n+9479, ", ")); \\ Arkadiusz Wesolowski, Mar 02 2011
CROSSREFS
KEYWORD
easy,sign
AUTHOR
EXTENSIONS
Definition and offset changed by R. J. Mathar, Jun 18 2009
STATUS
approved