|
|
A161611
|
|
Primes that are a sum of 7 consecutive Fibonacci numbers.
|
|
1
|
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Primes of the form F(k+7)-F(k), where F(k) is a Fibonacci number. - Paolo P. Lava, Jul 19 2012
|
|
LINKS
|
Table of n, a(n) for n=1..10.
|
|
FORMULA
|
{prime(j): prime(j) = A022096(k) for some k>4}. [R. J. Mathar, Jun 18 2009]
|
|
EXAMPLE
|
a(1) = 53 = 1+2+3+5+8+13+21 is prime;
a(2) = 139 = 3+5+8+13+21+34+55 is prime.
|
|
MATHEMATICA
|
Clear[Sum7Fibo]; Sum7Fibo[a_]:=Module[{p}, p=Fibonacci[a]+Fibonacci[a+1]+Fibonacci[a+2]+Fibonacci[a+3]+Fibonacci[a+4]+Fibonacci[a+5]+Fibonacci[a+6]]; lst={}; Do[If[PrimeQ[p=Sum7Fibo[n]], AppendTo[lst, p]], {n, 6!}]; Print[lst]; Clear[Sum7Fibo];
Select[Total/@Partition[Fibonacci[Range[200]], 7, 1], PrimeQ] (* Harvey P. Dale, Oct 14 2022 *)
|
|
CROSSREFS
|
Sequence in context: A044685 A239721 A142259 * A251076 A142043 A175600
Adjacent sequences: A161608 A161609 A161610 * A161612 A161613 A161614
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Vladimir Joseph Stephan Orlovsky, Jun 14 2009
|
|
STATUS
|
approved
|
|
|
|