login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A161415
First differences of A160414.
9
1, 8, 12, 28, 12, 36, 36, 92, 12, 36, 36, 108, 36, 108, 108, 292, 12, 36, 36, 108, 36, 108, 108, 324, 36, 108, 108, 324, 108, 324, 324, 908, 12, 36, 36, 108, 36, 108, 108, 324, 36, 108, 108, 324, 108, 324, 324, 972, 36, 108, 108, 324, 108, 324, 324, 972, 108, 324, 324
OFFSET
1,2
LINKS
David Applegate, Omar E. Pol and N. J. A. Sloane, The Toothpick Sequence and Other Sequences from Cellular Automata, Congressus Numerantium, Vol. 206 (2010), 157-191. [There is a typo in Theorem 6: (13) should read u(n) = 4.3^(wt(n-1)-1) for n >= 2.]
Omar E. Pol, Illustration of initial terms [From Omar E. Pol, Nov 11 2009]
D. Applegate, Omar E. Pol, N. J. A. Sloane, The toothpick sequence and other sequences from cellular automata, arXiv:1004.3036 [math.CO] [From R. J. Mathar, Oct 16 2010]
FORMULA
For n > 1, a(n) = 4*A048883(n-1), except a(n) = 4*A048883(n-1) - 2n if n is a power of 2. - N. J. A. Sloane, Jul 13 2009
MAPLE
Contribution from R. J. Mathar, Oct 16 2010: (Start)
isA000079 := proc(n) if type(n, 'even') then nops(numtheory[factorset](n)) = 1 ; else false ; fi ; end proc:
A048883 := proc(n) 3^wt(n) ; end proc:
A161415 := proc(n) if n = 1 then 1; elif isA000079(n) then 4*A048883(n-1)-2*n ; else 4*A048883(n-1) ; end if; end proc: seq(A161415(n), n=1..90) ; (End)
MATHEMATICA
a[1] = 1; a[n_] := 4*3^DigitCount[n-1, 2, 1] - If[IntegerQ[Log[2, n]], 2n, 0];
Array[a, 60] (* Jean-François Alcover, Nov 17 2017, after N. J. A. Sloane *)
CROSSREFS
Cf. A160727.
Cf. A048883, A161411, A162349. [From Omar E. Pol, Nov 11 2009]
Sequence in context: A072327 A218558 A181735 * A256531 A117802 A083485
KEYWORD
nonn
AUTHOR
Omar E. Pol, May 20 2009, Jun 13 2009
EXTENSIONS
More terms from R. J. Mathar, Oct 16 2010
STATUS
approved