login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A161381
Triangle read by rows: T(n,k) = n!*2^k/(n-k)! (n >= 0, 0 <= k <= n).
0
1, 1, 2, 1, 4, 8, 1, 6, 24, 48, 1, 8, 48, 192, 384, 1, 10, 80, 480, 1920, 3840, 1, 12, 120, 960, 5760, 23040, 46080, 1, 14, 168, 1680, 13440, 80640, 322560, 645120, 1, 16, 224, 2688, 26880, 215040, 1290240, 5160960, 10321920, 1, 18, 288, 4032, 48384, 483840, 3870720, 23224320, 92897280, 185794560
OFFSET
0,3
COMMENTS
From Dennis P. Walsh, Nov 20 2012: (Start)
T(n,k) is the number of functions f:[k]->[2n] such that, if f(x)=f(y) or f(x)=2n+1-f(y), then x=y.
We call such functions injective-plus.
Equivalently, T(n,k) gives the number of ways to select k couples from n couples, then choose one person from each of the k selected couples, and then arrange those k individuals in a line. For example, T(50,10) is the number of ways to select 10 U.S. senators, one from each of ten different states, and arrange the senators in a reception line for a visiting dignitary. (End)
LINKS
Mathieu Guay-Paquet and Jeffrey Shallit, Avoiding Squares and Overlaps Over the Natural Numbers, arXiv:0901.1397 [math.CO], 2009.
Mathieu Guay-Paquet and Jeffrey Shallit, Avoiding Squares and Overlaps Over the Natural Numbers, Discrete Math., 309 (2009), 6245-6254.
FORMULA
From Dennis P. Walsh, Nov 20 2012: (Start)
E.g.f. for column k : exp(x)*(2*x)^k.
G.f. for column k : (2*x)^k*k!/(1 - x)^(k+1).
T(n,k) = 2^(k-n)*Sum_{j = 0..n} (binomial(n,j)T(j,i)T(n-j,k-i). (End)
From Peter Bala, Feb 20 2016: (Start)
T(n, k) = 2*n*T(n-1, k-1) = 2*k*T(n-1, k-1) + T(n-1, k) = n*T(n-1, k)/(n - k) = 2*(n - k + 1)*T(n, k-1).
G.f. Sum_{n >= 1} (2*n*x*t)^(n-1)/(1 - (2*n*t - 1)*x)^n = 1 + (1 + 2*t)*x + (1 + 4*t + 8*t^2)*x^2 + ....
E.g.f. exp(x)/(1 - 2*x*t) = 1 + (1 + 2*t)*x + (1 + 4*t + 8*t^2)*x^2/2! + ....
E.g.f. for row n: (1 + 2*x)^n
Row reversed triangle is the exponential Riordan array [1/(1 - 2*x), x]. (End)
EXAMPLE
Triangle begins:
1
1 2
1 4 8
1 6 24 48
1 8 48 192 384
1 10 80 480 1920 3840
For n=2 and k=2, T(2,2)=8 since there are exactly 8 functions f from {1,2} to {1,2,3,4} that are injective-plus. Letting f = <f(1),f(2)>, the 8 functions are <1,2>, <1,3>, <2,1>, <2,4>, <3,1>, <3,4>, <4,2>,and <4,3>. - Dennis P. Walsh, Nov 20 2012
MAPLE
seq(seq(2^k*n!/(n-k)!, k=0..n), n=0..20); # Dennis P. Walsh, Nov 20 2012
MATHEMATICA
Flatten@Table[Pochhammer[n - k + 1, k] 2^k, {n, 0, 20}, {k, 0, n}] (* J. Mulder (jasper.mulder(AT)planet.nl), Jan 28 2010 *)
PROG
(Magma) /* As triangle */ [[Factorial(n)*2^k/Factorial((n-k)): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Dec 23 2015
CROSSREFS
A010844 (row sums). Cf. A008279.
Sequence in context: A348678 A011234 A208917 * A220579 A330787 A128412
KEYWORD
nonn,tabl,easy
AUTHOR
N. J. A. Sloane, Nov 28 2009
EXTENSIONS
More terms from J. Mulder (jasper.mulder(AT)planet.nl), Jan 28 2010
STATUS
approved