|
|
A160994
|
|
Least prime power having n divisors such that every sum of two or more divisors is composite.
|
|
0
|
|
|
3, 7, 7, 19, 19, 139, 151, 211, 211, 211, 421, 2311, 2311, 92401, 120121, 120121, 180181, 2312311
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
2,1
|
|
LINKS
|
Table of n, a(n) for n=2..19.
|
|
MATHEMATICA
|
(* first do *) Needs["Combinatorica`"] (* then *) f[n_] := Block[{d = Divisors@n, k, mx}, k = 1 + Length@d; mx = 2^Length[d]; While[k < mx && !PrimeQ[Plus @@ NthSubset[k, d]], k++ ]; If[k == mx, Length@d, 0]];
|
|
CROSSREFS
|
Sequence in context: A239047 A229521 A263337 * A113833 A212286 A157102
Adjacent sequences: A160991 A160992 A160993 * A160995 A160996 A160997
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Robert G. Wilson v, Jun 01 2009
|
|
STATUS
|
approved
|
|
|
|