login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A160960 a(n) = Sum_{d|n} Moebius(n/d)*d^(b-1)/phi(n) for b = 12. 3
1, 2047, 88573, 2096128, 12207031, 181308931, 329554457, 2146435072, 5230147077, 24987792457, 28531167061, 185660345344, 149346699503, 674597973479, 1081213356763, 2197949513728, 2141993519227, 10706111066619 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

a(n) is the number of lattices L in Z^11 such that the quotient group Z^11 / L is C_n. - Álvar Ibeas, Nov 26 2015

REFERENCES

J. H. Kwak and J. Lee, Enumeration of graph coverings, surface branched coverings and related group theory, in Combinatorial and Computational Mathematics (Pohang, 2000), ed. S. Hong et al., World Scientific, Singapore 2001, pp. 97-161. See p. 134.

LINKS

Álvar Ibeas, Table of n, a(n) for n = 1..10000

Index to Jordan function ratios J_k/J_1

FORMULA

a(n) = J_11(n)/J_1(n) where J_11 and J_1(n) = A000010(n) are Jordan functions. - R. J. Mathar, Jul 12 2011

From Álvar Ibeas, Nov 26 2015: (Start)

Multiplicative with a(p^e) = p^(10e-10) * (p^11-1) / (p-1).

For squarefree n, a(n) = A000203(n^10).

(End)

MATHEMATICA

b = 12; Table[Sum[MoebiusMu[n/d] d^(b - 1)/EulerPhi@ n, {d, Divisors@ n}], {n, 18}] (* Michael De Vlieger, Nov 27 2015 *)

PROG

(PARI) vector(100, n, sumdiv(n^10, d, if(ispower(d, 11), moebius(sqrtnint(d, 11))*sigma(n^10/d), 0))) \\ Altug Alkan, Nov 26 2015

CROSSREFS

Sequence in context: A270697 A075954 A011561 * A038998 A068027 A075949

Adjacent sequences:  A160957 A160958 A160959 * A160961 A160962 A160963

KEYWORD

nonn,mult

AUTHOR

N. J. A. Sloane, Nov 19 2009

EXTENSIONS

Definition corrected by Enrique Pérez Herrero, Oct 30 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified September 30 00:00 EDT 2016. Contains 276618 sequences.