login
A160919
Averages of twin prime pairs that are sums of 5 consecutive averages of twin prime pairs.
1
108, 570, 858, 1452, 3330, 6792, 7458, 9420, 9630, 10710, 10890, 13722, 17388, 18120, 25032, 27582, 27792, 34032, 68712, 68898, 72270, 76830, 78978, 81372, 89820, 90402, 95232, 99708, 104472, 119772, 122868, 125790, 138078, 165312
OFFSET
1,1
LINKS
EXAMPLE
Averages of twin prime pairs: 4, 6, 12, 18, 30, 42, 60, 72, 102, 108, 138, 150, ...
108 = 6 + 12 + 18 + 30 + 42, 570 = 72 + 102 + 108 + 138 + 150, ...
MATHEMATICA
PrimeNextTwinAverage[n_]:=Module[{k}, k=n+1; While[ !PrimeQ[k-1]||!PrimeQ[k+1], k++ ]; k]; lst={}; Do[If[PrimeQ[n-1]&&PrimeQ[n+1], a=n; b=PrimeNextTwinAverage[a]; c=PrimeNextTwinAverage[b]; d=PrimeNextTwinAverage[c]; e=PrimeNextTwinAverage[d]; a=a+b+c+d+e; If[PrimeQ[a-1]&&PrimeQ[a+1], AppendTo[lst, a]]], {n, 3*8!}]; lst
Select[Total/@(Partition[Mean/@Select[Partition[Prime[Range[10000]], 2, 1], #[[2]]-#[[1]]==2&], 5, 1]), AllTrue[#+{1, -1}, PrimeQ]&] (* Harvey P. Dale, Sep 26 2024 *)
CROSSREFS
KEYWORD
nonn,less
AUTHOR
STATUS
approved