OFFSET
0,3
COMMENTS
Consider the wedge of the plane defined by points (x,y) with y >= |x|, with the initial toothpick extending from (0,0) to (0,2); then extend by the same rule as for A139250, always staying inside the wedge.
Number of toothpick in the structure after n rounds.
LINKS
David Applegate, Omar E. Pol and N. J. A. Sloane, The Toothpick Sequence and Other Sequences from Cellular Automata, Congressus Numerantium, Vol. 206 (2010), 157-191. [There is a typo in Theorem 6: (13) should read u(n) = 4.3^(wt(n-1)-1) for n >= 2.]
Omar E. Pol, Illustration of initial terms
N. J. A. Sloane, Catalog of Toothpick and Cellular Automata Sequences in the OEIS
FORMULA
A139250(n) = 2a(n) + 2a(n+1) - 4n - 1 for n > 0. - N. J. A. Sloane, May 25 2009
Let G = (x + 2*x^2 + 4*x^2*(1+x)*((Product_{k>=1} (1 + x^(2^k-1) + 2*x^(2^k))) - 1)/(1+2*x))/(1-x) (= g.f. for A139250); then the g.f. for the present sequence is (G + 2 + x*(5-x)/(1-x)^2)*x/(2*(1+x)). - N. J. A. Sloane, May 25 2009
MAPLE
G := (x + 2*x^2 + 4*x^2*(1+x)*(mul(1+x^(2^k-1)+2*x^(2^k), k=1..20)-1)/(1+2*x))/(1-x); P:=(G + 2 + x*(5-x)/(1-x)^2)*x/(2*(1+x)); series(P, x, 200); seriestolist(%); # N. J. A. Sloane, May 25 2009
MATHEMATICA
terms = 62;
G = (x + 2x^2 + 4x^2 (1+x)(Product[1+x^(2^k-1) + 2x^(2^k), {k, 1, Ceiling[ Log[2, terms]]}]-1)/(1+2x))/(1-x);
P = (G + 2 + x(5-x)/(1-x)^2) x/(2(1+x));
CoefficientList[P + O[x]^terms, x] (* Jean-François Alcover, Nov 03 2018, from Maple *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Omar E. Pol, May 23 2009
EXTENSIONS
More terms from N. J. A. Sloane, May 25 2009
Definition revised by N. J. A. Sloane, Jan 02 2010
STATUS
approved