login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A160298
Numerator of Hermite(n, 29/30).
1
1, 29, 391, -14761, -955919, -1151851, 2117414071, 64515005759, -4798919156639, -371422676274931, 8664364972414951, 1922668627437223079, 12868783582225461841, -10009215864276466233211, -365549644020036472532969, 52457120268360679565773199
OFFSET
0,2
LINKS
FORMULA
From G. C. Greubel, Oct 04 2018: (Start)
a(n) = 15^n * Hermite(n, 29/30).
E.g.f.: exp(29*x - 225*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(29/15)^(n-2*k)/(k!*(n-2*k)!)). (End)
EXAMPLE
Numerators of 1, 29/15, 391/225, -14761/3375, -955919/50625, ...
MATHEMATICA
Table[15^n*HermiteH[n, 29/30], {n, 0, 30}] (* G. C. Greubel, Oct 04 2018 *)
PROG
(PARI) a(n)=numerator(polhermite(n, 29/30)) \\ Charles R Greathouse IV, Jan 29 2016
(PARI) x='x+O('x^30); Vec(serlaplace(exp(29*x - 225*x^2))) \\ G. C. Greubel, Oct 04 2018
(Magma) [Numerator((&+[(-1)^k*Factorial(n)*(29/15)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Oct 04 2018
CROSSREFS
Cf. A001024 (denominators).
Sequence in context: A125441 A142756 A142327 * A077508 A077514 A210260
KEYWORD
sign,frac
AUTHOR
N. J. A. Sloane, Nov 12 2009
STATUS
approved