OFFSET
1,3
COMMENTS
Thanks to David Miller.
FORMULA
a(p) = (p-1)*(p^2-p)/2, for p prime.
a(n) = (n/2)*Sum_{i=1..n-1} gcd(n,i)*(n/gcd(n,i)-1). [Edited by Richard L. Ollerton, May 06 2021]
a(n) = (n^2/2)*Sum_{d|n} phi(d)*(d-1)/d, where phi = A000010. - Richard L. Ollerton, May 06 2021
From Ridouane Oudra, Aug 24 2022: (Start)
a(n) = Sum_{i=1..n} Sum_{j=1..n} (i*j mod n);
a(n) = n^3/2 - (n/2)*Sum_{i=1..n} gcd(n,i);
a(n) = n^3/2 - (n/2)*Sum_{d|n} d*tau(d)*moebius(n/d);
EXAMPLE
For n=4:
| 0 1 2 3
-+--------
0| 0 0 0 0
1| 0 1 2 3
2| 0 2 0 2
3| 0 3 2 1
Sum becomes 6+4+6 = 16.
PROG
(PARI) a(n) = (n/2)*sum(i=1, n-1, gcd(n, i)*(n/gcd(n, i)-1)); \\ Michel Marcus, Jun 16 2013 [edited by Richard L. Ollerton, May 06 2021]
CROSSREFS
KEYWORD
nonn
AUTHOR
David Byrne (david.roggeveen.byrne(AT)gmail.com), May 06 2009
EXTENSIONS
More terms from Carl Najafi, Sep 29 2011
STATUS
approved