login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A160254
Expansion of x*(2 - 3*x + x^2 - 4*x^3 + 3*x^4 - 2*x^5 + x*(1 - x - x^3)*sqrt((1 + 2*x)/(1 - 2*x)))/(2*(1 - 3*x + 3*x^2 - 3*x^3 + 4*x^4 - 3*x^5 + 2*x^6)).
1
1, 2, 4, 7, 13, 24, 44, 81, 151, 280, 525, 984, 1859, 3511, 6682, 12709, 24334, 46565, 89626, 172381, 333262, 643733, 1249147, 2421592, 4713715, 9165792, 17888456, 34873456, 68212220, 133269997, 261167821, 511211652, 1003436520, 1967293902
OFFSET
1,2
COMMENTS
a(n) is the number of nodes at level n in certain generating tree, denoted C, that embeds the tree of numerical semigroups.
Elizalde (2009) established that the number A007323(n) of numerical semigroups of genus n is bounded in C as follows: A000045(n+2) - 1 <= A007323(n) <= a(n) <= 1 + 3*2^(n - 3).
LINKS
Sergi Elizalde, Improved bounds on the number of numerical semigroups of a given genus, arXiv:0905.0489 [math.CO], May 4, 2009. See Table 1, p. 8.
PROG
(Maxima) gf : taylor(x*(2 - 3*x + x^2 - 4*x^3 + 3*x^4 - 2*x^5 + x*(1 - x - x^3)*sqrt((1 + 2*x)/(1 - 2*x)))/(2*(1 - 3*x + 3*x^2 - 3*x^3 + 4*x^4 - 3*x^5 + 2*x^6)), x, 0, 100)$
makelist(ratcoef(gf, x, n), n, 1, 100); /* Franck Maminirina Ramaharo, Jan 15 2019 */
CROSSREFS
Sequence in context: A305442 A000073 A255069 * A276661 A005318 A102111
KEYWORD
nonn,easy
AUTHOR
Jonathan Vos Post, May 06 2009
EXTENSIONS
Edited, and name replaced by the g.f. by Franck Maminirina Ramaharo, Jan 15 2019
STATUS
approved