login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A160220
Numerator of Hermite(n, 19/28).
1
1, 19, -31, -15485, -257759, 19383059, 873485761, -28992725309, -2947706709055, 34914759096979, 11062889692388641, 73329048495226499, -46309928432170516511, -1224828484332785265005, 212723654088018032104961, 10763608149690668144341699, -1046306531193423334034678399
OFFSET
0,2
LINKS
FORMULA
From G. C. Greubel, Sep 26 2018: (Start)
a(n) = 14^n * Hermite(n, 19/28).
E.g.f.: exp(19*x - 196*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(17/14)^(n-2*k)/(k!*(n-2*k)!)). (End)
EXAMPLE
Numerators of 1, 19/14, -31/196, -15485/2744, -257759/38416
MATHEMATICA
Numerator[HermiteH[Range[0, 20], 19/28]] (* Harvey P. Dale, Jul 26 2015 *)
Table[14^n*HermiteH[n, 19/28], {n, 0, 30}] (* G. C. Greubel, Sep 26 2018 *)
PROG
(PARI) a(n)=numerator(polhermite(n, 19/28)) \\ Charles R Greathouse IV, Jan 29 2016
(PARI) x='x+O('x^30); Vec(serlaplace(exp(19*x - 196*x^2))) \\ G. C. Greubel, Sep 26 2018
(Magma) [Numerator((&+[(-1)^k*Factorial(n)*(19/14)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Sep 26 2018
CROSSREFS
Cf. A001023 (denominators).
Sequence in context: A147210 A146816 A146659 * A133151 A184750 A101063
KEYWORD
sign,frac
AUTHOR
N. J. A. Sloane, Nov 12 2009
STATUS
approved