login
A159960
Number of permutations of the set 1,2,..., 2n such that at least one pair of adjacent numbers in the permutation differs by n.
1
1, 10, 292, 16152, 1443616, 189709600, 34420171584, 8241995095936, 2517637537094656, 955377719901439488, 440888939541736115200, 243144648530111594371072, 157920570527279020394569728, 119308432982412667510831095808, 103738687936577909824307104989184
OFFSET
1,2
COMMENTS
IMO '89 problem 6 asks to show that a(n) > A002674(n)/2.
LINKS
IMO, International Mathematics Olympia, see 1989, problem 6.
FORMULA
a(n) = Sum_{k=1..n} (-1)^(k-1)*binomial(2*n-k, k)*binomial(n, k)*2^k*(2*n-2*k)!.
Recurrence: (6*n - 17)*a(n) = 2*(n-1)*(36*n^2 - 156*n + 151)*a(n-1) - 4*(n-1)*(72*n^4 - 636*n^3 + 2062*n^2 - 2909*n + 1511)*a(n-2) + 4*(n-2)*(n-1)*(96*n^5 - 1280*n^4 + 6704*n^3 - 17208*n^2 + 21596*n - 10569)*a(n-3) + 8*(n-3)*(n-2)*(n-1)*(2*n - 7)*(6*n - 11)*a(n-4). - Vaclav Kotesovec, Mar 15 2014
a(n) ~ (1-BesselJ(0,2)) * sqrt(Pi) * 4^n * n^(2*n+1/2) / exp(2*n). - Vaclav Kotesovec, Mar 15 2014
MAPLE
f := proc (n) add((-1)^(k-1)*binomial(2*n-k, k)*binomial(n, k)*2^k*factorial(2*n-2*k), k = 1 .. n) end proc;
MATHEMATICA
a[n_] := (2*n)!*(1-HypergeometricPFQ[{-n}, {1, -2*n}, -2])/2; Table[a[n], {n, 1, 15}] (* Jean-François Alcover, Jan 27 2014 *)
PROG
(PARI) a(n)=sum(k=1, n, (-1)^(k-1)*binomial(2*n-k, k)*binomial(n, k)<<k*(2*n-2*k)!)/2 \\ Charles R Greathouse IV, Jun 19 2013
CROSSREFS
Cf. A002674.
Sequence in context: A222672 A024295 A291658 * A258794 A239775 A059072
KEYWORD
easy,nice,nonn
AUTHOR
Ji Li (vieplivee(AT)hotmail.com), Apr 28 2009
STATUS
approved