login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A159960
Number of permutations of the set 1,2,..., 2n such that at least one pair of adjacent numbers in the permutation differs by n.
1
1, 10, 292, 16152, 1443616, 189709600, 34420171584, 8241995095936, 2517637537094656, 955377719901439488, 440888939541736115200, 243144648530111594371072, 157920570527279020394569728, 119308432982412667510831095808, 103738687936577909824307104989184
OFFSET
1,2
COMMENTS
IMO '89 problem 6 asks to show that a(n) > A002674(n)/2.
LINKS
IMO, International Mathematics Olympia, see 1989, problem 6.
FORMULA
a(n) = Sum_{k=1..n} (-1)^(k-1)*binomial(2*n-k, k)*binomial(n, k)*2^k*(2*n-2*k)!.
Recurrence: (6*n - 17)*a(n) = 2*(n-1)*(36*n^2 - 156*n + 151)*a(n-1) - 4*(n-1)*(72*n^4 - 636*n^3 + 2062*n^2 - 2909*n + 1511)*a(n-2) + 4*(n-2)*(n-1)*(96*n^5 - 1280*n^4 + 6704*n^3 - 17208*n^2 + 21596*n - 10569)*a(n-3) + 8*(n-3)*(n-2)*(n-1)*(2*n - 7)*(6*n - 11)*a(n-4). - Vaclav Kotesovec, Mar 15 2014
a(n) ~ (1-BesselJ(0,2)) * sqrt(Pi) * 4^n * n^(2*n+1/2) / exp(2*n). - Vaclav Kotesovec, Mar 15 2014
MAPLE
f := proc (n) add((-1)^(k-1)*binomial(2*n-k, k)*binomial(n, k)*2^k*factorial(2*n-2*k), k = 1 .. n) end proc;
MATHEMATICA
a[n_] := (2*n)!*(1-HypergeometricPFQ[{-n}, {1, -2*n}, -2])/2; Table[a[n], {n, 1, 15}] (* Jean-François Alcover, Jan 27 2014 *)
PROG
(PARI) a(n)=sum(k=1, n, (-1)^(k-1)*binomial(2*n-k, k)*binomial(n, k)<<k*(2*n-2*k)!)/2 \\ Charles R Greathouse IV, Jun 19 2013
CROSSREFS
Cf. A002674.
Sequence in context: A222672 A024295 A291658 * A258794 A239775 A059072
KEYWORD
easy,nice,nonn
AUTHOR
Ji Li (vieplivee(AT)hotmail.com), Apr 28 2009
STATUS
approved